Integrating Rock Dust and Organic Amendments to Enhance Soil Quality and Microbial Activity for Sustainable Crop Production

Armah, A., Alrayes, L., Pham, T. H., Nadeem, M., Bartlett, O., Fordjour, E., Cheema, M., Galagedara, L., Abbey, L., & Thomas, R. (2025). Integrating Rock Dust and Organic Amendments to Enhance Soil Quality and Microbial Activity for Sustainable Crop Production. Plants14(8), 1163.

Abstract

Rock dust (RD) is a by-product of the precious metal mining industry. Some mining operations produce close to 2,000,000 Mg of RD/year, posing disposal issues. This study evaluated the physicochemical and microbial properties of RD from gold mining and its potential use in RD-based growing media. Ten media formulations were tested: Promix (Control), 100% (RD), 100% topsoil (TS), 50% RD + 50% topsoil (RDT), 25% RD + 75% topsoil (RT), 50% RD + 50% Promix (RP), 50% RD + 25% biochar + 25% Promix (RBP), 50% RD + 25% compost + 25% Promix (RCP), 50% RD + 50% biochar (RB), and Huplaso (negative control). RD particle size ranged from 0.1 to 2 mm with a bulk density of 1.5 g cm−3, while RD-based media ranged from 0.8 to 1.1 g cm−3 showing increased porosity. Nutrient content was analyzed using Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES), and the active microbial community assessed using PLFA biomarkers via GC-MS/FID, n = 4 and p = 0.05. Microbial analysis identified five classes (protozoa, eukaryotes, Gram-positive (G+), Gram-negative (G−), and fungi (F)), with a significant increase in G−, G+, and F in RD-based amendment RBP (28%) compared to control P (9%). G+, G−, and F showed a strong negative correlation (r = −0.98) with pH, while calcium correlated positively (r = 0.85) with eukaryotes and a strong positive correlation (r = 0.95) of cation exchange capacity with G+. This study suggests blending RD with organic amendments improves physicochemical quality and microbial activity, supporting its use in crop production over disposal.

Share your love